Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents
The Health system has witnessed numerous catastrophic outbreaks, epidemics, and pandemics. A biological outbreak can be natural, accidental or intended factors are responsible for the emergence of health threat. Threats can be genetics or biological; ecology; social,economic or political, and environmental based. Conventional technologies for the detection of these threats fail to adequately resolve the issues like imperfect detection, time-consuming procedures, high cost, and relatively reduced sensitivity. Conventional vaccines have limited efficacy, teratogenicity, high toxicity, and limited bio safety. Rapid developments in functionalized nano detectors and nano vaccines have revolutionalised the design of compatible nano-agents with improved on-site detection,decontamination, and rapid elimination of chemical, biological and infectious agents. This paper provides key insights into nanotechnology-based approaches and challenges related to the monitoring, detection,and targeting of these agents. Innovative nanotechnology-driven approaches with high sophistication may open up new opportunities in addressing the threats of biological and chemical warfare concerning homeland security.
-
Infectious Agents, Chemical and Biological Threats, Detection, Vaccination, Nanotechnology, Homeland Security
-
(1) Manzoor Khan Afridi
Associate Professor, Department of Politics and International Relations, International Islamic University Islamabad, Pakistan.
(2) Rubina Ali
PhD Scholar, Department of Politics and International Relations, International Islamic University Islamabad, Pakistan. and Visiting research Scholar at CSSS, Department of War Studies, and King's Coll
(3) Inamullah Jan
Lecturer, Department of Politics and International Relations, International Islamic University Islamabad, Pakistan.
- Arora, P., Sindhu, A., Dilbaghi, N., & Chaudhury, A. (2013). Engineered multifunctional nanowires as novel biosensing tools for highly sensitive detection. Applied Nanoscience, 3(5), 363-372
- Berger, T., Eisenkraft, A., Bar-Haim, E., Kassirer, M., Aran, A. A., & Fogel, I. (2016). Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini- review. Disaster and military medicine, 2(1), 7.
- Black, R. M. (2010). History and perspectives of bioanalytical methods for chemical warfare agent detection. Journal of Chromatography B, 878(17-18), 1207-1215
- Bradley, B. T., & Bryan, A. (2019). Emerging respiratory infections: the infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Paper presented at the Seminars in diagnostic pathology.
- Chen, W. C., Kawasaki, N., Nycholat, C. M., Han, S., Pilotte, J., Crocker, P. R., & Paulson, J. C. (2012). Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One, 7(6), e39039.
- Cirino, N. M., Musser, K. A., & Egan, C. (2004). Multiplex diagnostic platforms for detection of biothreat agents. Expert review of molecular diagnostics, 4(6), 841-857.
- Compton, J. (1988). Chemical and Biological Agents: Chemical and Toxicological Properties: The Telford Press, Caldwell, NJ.
- Daga, M. K., Kumar, N., Aarthi, J., Mawari, G., Garg, S., & Rohatgi, I. (2019). From SARS-CoV to coronavirus disease 2019 (COVID-19)-A brief review. Journal of Advanced Research in Medicine (E-ISSN: 2349-7181 & P-ISSN: 2394-7047), 6(4), 1-9.
- Elbi, S., Nimal, T., Rajan, V., Baranwal, G., Biswas, R., Jayakumar, R., & Sathianarayanan, S. (2017). Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids and Surfaces B: Biointerfaces, 160, 40-47.
- Ellison, D. H. (2007). Handbook of chemical and biological warfare agents: CRC press.
- Fan, Y., & Moon, J. J. (2017). Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(1), e1403
- Feng, Z., Li, W., & Varma, J. K. (2011). Gaps remain in China's ability to detect emerging infectious diseases despite advances since the onset of SARS and avian flu. Health Affairs, 30(1), 127- 135.
- Ganesan, K., Raza, S., & Vijayaraghavan, R. (2010). Chemical warfare agents. Journal of pharmacy and bioallied sciences, 2(3), 166.
- Gould, D. W., Walker, D., & Yoon, P. W. (2017). The evolution of BioSense: lessons learned and future directions. Public Health Reports, 132(1_suppl), 7S-11S.
- Grimm, S. K., & Ackerman, M. E. (2013). Vaccine design: emerging concepts and renewed optimism. Current opinion in biotechnology, 24(6), 1078-1088.
- Gronvall, G., Rambhia, K., Adalja, A., Cicero, A., Inglesby, T., & Kadlec, R. (2013). Next-generation monoclonal antibodies: challenges and opportunities. Center for Biosecurity of UPMC.
- Hamilton, M. G., & Lundy, P. M. (2007). Medical countermeasures to WMDs: defence research for civilian and military use. Toxicology, 233(1-3), 8-12.
- Hogendoorn, E.-J. (1997). A chemical weapons atlas. Bulletin of the atomic scientists, 53(5), 35-39.
- Ilchmann, K., & Revill, J. (2014). Chemical and biological weapons in the ‘New Wars'. Science and engineering ethics, 20(3), 753-767.
- Imshenetsky, A. (1960). Modern Microbiology and the Biological Warfare Menace. Bulletin of the atomic scientists, 16(6), 241-242
- Know, P. W. Y. N. T. Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333. URL: http://www. CDC. gov/features/pertussis.
- Kwon, O. S., Song, H. S., Park, T. H., & Jang, J. (2018). Conducting nanomaterial sensor using natural receptors. Chemical Reviews, 119(1), 36-93.
- Lee, J. S., Hadjipanayis, A. G., & Parker, M. D. (2005). Viral vectors for use in the development of biodefense vaccines. Advanced drug delivery reviews, 57(9), 1293-1314
- Lee, N. H., Nahm, S.-H., & Choi, I. S. (2018). Real-Time Monitoring of a Botulinum Neurotoxin Using All-Carbon Nanotube-Based Field-Effect Transistor Devices. Sensors, 18(12), 4235
- Li, Y., Li, M., Gong, T., Zhang, Z., & Sun, X. (2017). Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration. Journal of Controlled Release, 262, 151-158.
- Liu, Z., Zhou, C., Qin, Y., Wang, Z., Wang, L., Wei, X., . . . Wang, W. (2017). Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle- based nanovaccine. Cell discovery, 3(1), 1-14.
- Luo, M., Samandi, L. Z., Wang, Z., Chen, Z. J., & Gao, J. (2017). Synthetic nano vaccines for immunotherapy. Journal of Controlled Release, 263, 200-210.
- Mani, S., Wierzba, T., & Walker, R. I. (2016). Status of vaccine research and development for Shigella. Vaccine, 34(26), 2887-2894
- Moon, J. J., Huang, B., & Irvine, D. J. (2012). Engineering nanoâ€Âand microparticles to tune immunity. Advanced materials, 24(28), 3724-3746.
- Orozco, J., Pan, G., Sattayasamitsathit, S., Galarnyk, M., & Wang, J. (2015). Micromotors to capture and destroy anthrax simulant spores. Analyst, 140(5), 1421-1427.
- Pitschmann, V. (2014). Overall view of chemical and biochemical weapons. Toxins, 6(6), 1761-1784.
- Rajakaruna, S. J., Liu, W.-B., Ding, Y.-B., & Cao, G.-W. (2017). Strategy and technology to prevent hospital-acquired infections: Lessons from SARS, Ebola, and MERS in Asia and West Africa. Military Medical Research, 4(1), 32.
- Ramasamy, S., Liu, C., Tran, H., Gubala, A., Gauci, P., McAllister, J., & Vo, T. (2010). Principles of antidote pharmacology: an update on prophylaxis, postâ€Âexposure treatment recommendations and research initiatives for biological agents. British journal of pharmacology, 161(4), 721- 748.
- Rowland, C. E., Brown III, C. W., Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464-477.
- Rudge, J. W., Hanvoravongchai, P., Krumkamp, R., Chavez, I., Adisasmito, W., Chau, P. N., . . . Stein, M. (2012). Health system resource gaps and associated mortality from pandemic influenza across six Asian territories. PLoS One, 7(2).
- Saito, M., Uchida, N., Furutani, S., Murahashi, M., Espulgar, W., Nagatani, N., & Kondo, S. (2018). Field- deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsystems & Nanoengineering, 4(1), 1-11.
- Saleem, K., Khursheed, Z., Hano, C., Anjum, I., & Anjum, S. (2019). Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials, 9(12), 1749.
- Simpson, L. L. (2004). Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol., 44, 167-193.
- Sugawara, T., Ohkusa, Y., Kawanohara, H., & Kamei, M. (2018). Prescription surveillance for early detection system of emerging and re-emerging infectious disease outbreaks. Bioscience trends, 12(5), 523-525.
- Sydnes, L. K. (2013). Update the chemical weapons convention: bring biological threats into the treaty and make chemists more aware of the dark side of their research. Nature, 496(7443), 25-27.
- Szinicz, L. (2005). History of chemical and biological warfare agents. Toxicology, 214(3), 167-181.
- Tao, P., Mahalingam, M., Zhu, J., Moayeri, M., Sha, J., Lawrence, W. S., . . . Rao, V. B. (2018). A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. MBio, 9(5), e01926-01918.
- Titus, E., Lemmer, G., Slagley, J., & Eninger, R. (2019). A review of CBRN topics related to military and civilian patient exposure and decontamination. American journal of disaster medicine, 14(2), 137-149.
- Vijayan, V., Mohapatra, A., Uthaman, S., & Park, I.-K. (2019). Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics, 11(10), 534.
- Wagner, C. S., & Alexander, J. (2013). Evaluating transformative research programmes: A case study of the NSF Small Grants for Exploratory Research programme. Research Evaluation, 22(3), 187-197.
- Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown III, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sensors, 3(10), 1894-2024.
- Yeh, M.-K., Chen, J.-L., & Chiang, C.-H. (2002). Vibrio cholerae-loaded poly (DL lactide-co-glycolide) microparticles. Journal of microencapsulation, 19(2), 203-212.
- Yue, H., & Ma, G. (2015). Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine, 33(44), 5927-5936.
- Zhang, Y., Yuan, K., & Zhang, L. (2019). Micro/nanomachines: from functionalization to sensing and removal. Advanced Materials Technologies, 4(4), 1800636.
- Zingaretti, C., De Francesco, R., & Abrignani, S. (2014). Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clinical Microbiology and Infection, 20, 103-109.
Cite this article
-
APA : Afridi, M. K., Ali, R., & Jan, I. (2020). Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents. Global Strategic & Security Studies Review, V(III), 117-129. https://doi.org/10.31703/gsssr.2020(V-III).13
-
CHICAGO : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. 2020. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V (III): 117-129 doi: 10.31703/gsssr.2020(V-III).13
-
HARVARD : AFRIDI, M. K., ALI, R. & JAN, I. 2020. Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents. Global Strategic & Security Studies Review, V, 117-129.
-
MHRA : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. 2020. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V: 117-129
-
MLA : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V.III (2020): 117-129 Print.
-
OXFORD : Afridi, Manzoor Khan, Ali, Rubina, and Jan, Inamullah (2020), "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents", Global Strategic & Security Studies Review, V (III), 117-129
-
TURABIAN : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review V, no. III (2020): 117-129. https://doi.org/10.31703/gsssr.2020(V-III).13