IMPACT OF SOCIAL SCIENCES ON NANOVACCINES AWARENESS IN ATTAINING SUSTAINABILITY AGAINST BIOLOGICAL WARFARE AGENTS

http://dx.doi.org/10.31703/gsssr.2020(V-III).13      10.31703/gsssr.2020(V-III).13      Published : Sep 2020
Authored by : Manzoor Khan Afridi , Rubina Ali , Inamullah Jan

13 Pages : 117-129

References

  • Arora, P., Sindhu, A., Dilbaghi, N., & Chaudhury, A. (2013). Engineered multifunctional nanowires as novel biosensing tools for highly sensitive detection. Applied Nanoscience, 3(5), 363-372
  • Berger, T., Eisenkraft, A., Bar-Haim, E., Kassirer, M., Aran, A. A., & Fogel, I. (2016). Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini- review. Disaster and military medicine, 2(1), 7.
  • Black, R. M. (2010). History and perspectives of bioanalytical methods for chemical warfare agent detection. Journal of Chromatography B, 878(17-18), 1207-1215
  • Bradley, B. T., & Bryan, A. (2019). Emerging respiratory infections: the infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Paper presented at the Seminars in diagnostic pathology.
  • Chen, W. C., Kawasaki, N., Nycholat, C. M., Han, S., Pilotte, J., Crocker, P. R., & Paulson, J. C. (2012). Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One, 7(6), e39039.
  • Cirino, N. M., Musser, K. A., & Egan, C. (2004). Multiplex diagnostic platforms for detection of biothreat agents. Expert review of molecular diagnostics, 4(6), 841-857.
  • Compton, J. (1988). Chemical and Biological Agents: Chemical and Toxicological Properties: The Telford Press, Caldwell, NJ.
  • Daga, M. K., Kumar, N., Aarthi, J., Mawari, G., Garg, S., & Rohatgi, I. (2019). From SARS-CoV to coronavirus disease 2019 (COVID-19)-A brief review. Journal of Advanced Research in Medicine (E-ISSN: 2349-7181 & P-ISSN: 2394-7047), 6(4), 1-9.
  • Elbi, S., Nimal, T., Rajan, V., Baranwal, G., Biswas, R., Jayakumar, R., & Sathianarayanan, S. (2017). Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids and Surfaces B: Biointerfaces, 160, 40-47.
  • Ellison, D. H. (2007). Handbook of chemical and biological warfare agents: CRC press.
  • Fan, Y., & Moon, J. J. (2017). Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(1), e1403
  • Feng, Z., Li, W., & Varma, J. K. (2011). Gaps remain in China's ability to detect emerging infectious diseases despite advances since the onset of SARS and avian flu. Health Affairs, 30(1), 127- 135.
  • Ganesan, K., Raza, S., & Vijayaraghavan, R. (2010). Chemical warfare agents. Journal of pharmacy and bioallied sciences, 2(3), 166.
  • Gould, D. W., Walker, D., & Yoon, P. W. (2017). The evolution of BioSense: lessons learned and future directions. Public Health Reports, 132(1_suppl), 7S-11S.
  • Grimm, S. K., & Ackerman, M. E. (2013). Vaccine design: emerging concepts and renewed optimism. Current opinion in biotechnology, 24(6), 1078-1088.
  • Gronvall, G., Rambhia, K., Adalja, A., Cicero, A., Inglesby, T., & Kadlec, R. (2013). Next-generation monoclonal antibodies: challenges and opportunities. Center for Biosecurity of UPMC.
  • Hamilton, M. G., & Lundy, P. M. (2007). Medical countermeasures to WMDs: defence research for civilian and military use. Toxicology, 233(1-3), 8-12.
  • Hogendoorn, E.-J. (1997). A chemical weapons atlas. Bulletin of the atomic scientists, 53(5), 35-39.
  • Ilchmann, K., & Revill, J. (2014). Chemical and biological weapons in the ‘New Wars'. Science and engineering ethics, 20(3), 753-767.
  • Imshenetsky, A. (1960). Modern Microbiology and the Biological Warfare Menace. Bulletin of the atomic scientists, 16(6), 241-242
  • Know, P. W. Y. N. T. Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333. URL: http://www. CDC. gov/features/pertussis.
  • Kwon, O. S., Song, H. S., Park, T. H., & Jang, J. (2018). Conducting nanomaterial sensor using natural receptors. Chemical Reviews, 119(1), 36-93.
  • Lee, J. S., Hadjipanayis, A. G., & Parker, M. D. (2005). Viral vectors for use in the development of biodefense vaccines. Advanced drug delivery reviews, 57(9), 1293-1314
  • Lee, N. H., Nahm, S.-H., & Choi, I. S. (2018). Real-Time Monitoring of a Botulinum Neurotoxin Using All-Carbon Nanotube-Based Field-Effect Transistor Devices. Sensors, 18(12), 4235
  • Li, Y., Li, M., Gong, T., Zhang, Z., & Sun, X. (2017). Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration. Journal of Controlled Release, 262, 151-158.
  • Liu, Z., Zhou, C., Qin, Y., Wang, Z., Wang, L., Wei, X., . . . Wang, W. (2017). Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle- based nanovaccine. Cell discovery, 3(1), 1-14.
  • Luo, M., Samandi, L. Z., Wang, Z., Chen, Z. J., & Gao, J. (2017). Synthetic nano vaccines for immunotherapy. Journal of Controlled Release, 263, 200-210.
  • Mani, S., Wierzba, T., & Walker, R. I. (2016). Status of vaccine research and development for Shigella. Vaccine, 34(26), 2887-2894
  • Moon, J. J., Huang, B., & Irvine, D. J. (2012). Engineering nano‐and microparticles to tune immunity. Advanced materials, 24(28), 3724-3746.
  • Orozco, J., Pan, G., Sattayasamitsathit, S., Galarnyk, M., & Wang, J. (2015). Micromotors to capture and destroy anthrax simulant spores. Analyst, 140(5), 1421-1427.
  • Pitschmann, V. (2014). Overall view of chemical and biochemical weapons. Toxins, 6(6), 1761-1784.
  • Rajakaruna, S. J., Liu, W.-B., Ding, Y.-B., & Cao, G.-W. (2017). Strategy and technology to prevent hospital-acquired infections: Lessons from SARS, Ebola, and MERS in Asia and West Africa. Military Medical Research, 4(1), 32.
  • Ramasamy, S., Liu, C., Tran, H., Gubala, A., Gauci, P., McAllister, J., & Vo, T. (2010). Principles of antidote pharmacology: an update on prophylaxis, post‐exposure treatment recommendations and research initiatives for biological agents. British journal of pharmacology, 161(4), 721- 748.
  • Rowland, C. E., Brown III, C. W., Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464-477.
  • Rudge, J. W., Hanvoravongchai, P., Krumkamp, R., Chavez, I., Adisasmito, W., Chau, P. N., . . . Stein, M. (2012). Health system resource gaps and associated mortality from pandemic influenza across six Asian territories. PLoS One, 7(2).
  • Saito, M., Uchida, N., Furutani, S., Murahashi, M., Espulgar, W., Nagatani, N., & Kondo, S. (2018). Field- deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsystems & Nanoengineering, 4(1), 1-11.
  • Saleem, K., Khursheed, Z., Hano, C., Anjum, I., & Anjum, S. (2019). Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials, 9(12), 1749.
  • Simpson, L. L. (2004). Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol., 44, 167-193.
  • Sugawara, T., Ohkusa, Y., Kawanohara, H., & Kamei, M. (2018). Prescription surveillance for early detection system of emerging and re-emerging infectious disease outbreaks. Bioscience trends, 12(5), 523-525.
  • Sydnes, L. K. (2013). Update the chemical weapons convention: bring biological threats into the treaty and make chemists more aware of the dark side of their research. Nature, 496(7443), 25-27.
  • Szinicz, L. (2005). History of chemical and biological warfare agents. Toxicology, 214(3), 167-181.
  • Tao, P., Mahalingam, M., Zhu, J., Moayeri, M., Sha, J., Lawrence, W. S., . . . Rao, V. B. (2018). A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. MBio, 9(5), e01926-01918.
  • Titus, E., Lemmer, G., Slagley, J., & Eninger, R. (2019). A review of CBRN topics related to military and civilian patient exposure and decontamination. American journal of disaster medicine, 14(2), 137-149.
  • Vijayan, V., Mohapatra, A., Uthaman, S., & Park, I.-K. (2019). Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics, 11(10), 534.
  • Wagner, C. S., & Alexander, J. (2013). Evaluating transformative research programmes: A case study of the NSF Small Grants for Exploratory Research programme. Research Evaluation, 22(3), 187-197.
  • Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown III, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sensors, 3(10), 1894-2024.
  • Yeh, M.-K., Chen, J.-L., & Chiang, C.-H. (2002). Vibrio cholerae-loaded poly (DL lactide-co-glycolide) microparticles. Journal of microencapsulation, 19(2), 203-212.
  • Yue, H., & Ma, G. (2015). Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine, 33(44), 5927-5936.
  • Zhang, Y., Yuan, K., & Zhang, L. (2019). Micro/nanomachines: from functionalization to sensing and removal. Advanced Materials Technologies, 4(4), 1800636.
  • Zingaretti, C., De Francesco, R., & Abrignani, S. (2014). Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clinical Microbiology and Infection, 20, 103-109.
  • Arora, P., Sindhu, A., Dilbaghi, N., & Chaudhury, A. (2013). Engineered multifunctional nanowires as novel biosensing tools for highly sensitive detection. Applied Nanoscience, 3(5), 363-372
  • Berger, T., Eisenkraft, A., Bar-Haim, E., Kassirer, M., Aran, A. A., & Fogel, I. (2016). Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini- review. Disaster and military medicine, 2(1), 7.
  • Black, R. M. (2010). History and perspectives of bioanalytical methods for chemical warfare agent detection. Journal of Chromatography B, 878(17-18), 1207-1215
  • Bradley, B. T., & Bryan, A. (2019). Emerging respiratory infections: the infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Paper presented at the Seminars in diagnostic pathology.
  • Chen, W. C., Kawasaki, N., Nycholat, C. M., Han, S., Pilotte, J., Crocker, P. R., & Paulson, J. C. (2012). Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One, 7(6), e39039.
  • Cirino, N. M., Musser, K. A., & Egan, C. (2004). Multiplex diagnostic platforms for detection of biothreat agents. Expert review of molecular diagnostics, 4(6), 841-857.
  • Compton, J. (1988). Chemical and Biological Agents: Chemical and Toxicological Properties: The Telford Press, Caldwell, NJ.
  • Daga, M. K., Kumar, N., Aarthi, J., Mawari, G., Garg, S., & Rohatgi, I. (2019). From SARS-CoV to coronavirus disease 2019 (COVID-19)-A brief review. Journal of Advanced Research in Medicine (E-ISSN: 2349-7181 & P-ISSN: 2394-7047), 6(4), 1-9.
  • Elbi, S., Nimal, T., Rajan, V., Baranwal, G., Biswas, R., Jayakumar, R., & Sathianarayanan, S. (2017). Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids and Surfaces B: Biointerfaces, 160, 40-47.
  • Ellison, D. H. (2007). Handbook of chemical and biological warfare agents: CRC press.
  • Fan, Y., & Moon, J. J. (2017). Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(1), e1403
  • Feng, Z., Li, W., & Varma, J. K. (2011). Gaps remain in China's ability to detect emerging infectious diseases despite advances since the onset of SARS and avian flu. Health Affairs, 30(1), 127- 135.
  • Ganesan, K., Raza, S., & Vijayaraghavan, R. (2010). Chemical warfare agents. Journal of pharmacy and bioallied sciences, 2(3), 166.
  • Gould, D. W., Walker, D., & Yoon, P. W. (2017). The evolution of BioSense: lessons learned and future directions. Public Health Reports, 132(1_suppl), 7S-11S.
  • Grimm, S. K., & Ackerman, M. E. (2013). Vaccine design: emerging concepts and renewed optimism. Current opinion in biotechnology, 24(6), 1078-1088.
  • Gronvall, G., Rambhia, K., Adalja, A., Cicero, A., Inglesby, T., & Kadlec, R. (2013). Next-generation monoclonal antibodies: challenges and opportunities. Center for Biosecurity of UPMC.
  • Hamilton, M. G., & Lundy, P. M. (2007). Medical countermeasures to WMDs: defence research for civilian and military use. Toxicology, 233(1-3), 8-12.
  • Hogendoorn, E.-J. (1997). A chemical weapons atlas. Bulletin of the atomic scientists, 53(5), 35-39.
  • Ilchmann, K., & Revill, J. (2014). Chemical and biological weapons in the ‘New Wars'. Science and engineering ethics, 20(3), 753-767.
  • Imshenetsky, A. (1960). Modern Microbiology and the Biological Warfare Menace. Bulletin of the atomic scientists, 16(6), 241-242
  • Know, P. W. Y. N. T. Centers for Disease Control and Prevention 1600 Clifton Rd Atlanta, GA 30333. URL: http://www. CDC. gov/features/pertussis.
  • Kwon, O. S., Song, H. S., Park, T. H., & Jang, J. (2018). Conducting nanomaterial sensor using natural receptors. Chemical Reviews, 119(1), 36-93.
  • Lee, J. S., Hadjipanayis, A. G., & Parker, M. D. (2005). Viral vectors for use in the development of biodefense vaccines. Advanced drug delivery reviews, 57(9), 1293-1314
  • Lee, N. H., Nahm, S.-H., & Choi, I. S. (2018). Real-Time Monitoring of a Botulinum Neurotoxin Using All-Carbon Nanotube-Based Field-Effect Transistor Devices. Sensors, 18(12), 4235
  • Li, Y., Li, M., Gong, T., Zhang, Z., & Sun, X. (2017). Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration. Journal of Controlled Release, 262, 151-158.
  • Liu, Z., Zhou, C., Qin, Y., Wang, Z., Wang, L., Wei, X., . . . Wang, W. (2017). Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle- based nanovaccine. Cell discovery, 3(1), 1-14.
  • Luo, M., Samandi, L. Z., Wang, Z., Chen, Z. J., & Gao, J. (2017). Synthetic nano vaccines for immunotherapy. Journal of Controlled Release, 263, 200-210.
  • Mani, S., Wierzba, T., & Walker, R. I. (2016). Status of vaccine research and development for Shigella. Vaccine, 34(26), 2887-2894
  • Moon, J. J., Huang, B., & Irvine, D. J. (2012). Engineering nano‐and microparticles to tune immunity. Advanced materials, 24(28), 3724-3746.
  • Orozco, J., Pan, G., Sattayasamitsathit, S., Galarnyk, M., & Wang, J. (2015). Micromotors to capture and destroy anthrax simulant spores. Analyst, 140(5), 1421-1427.
  • Pitschmann, V. (2014). Overall view of chemical and biochemical weapons. Toxins, 6(6), 1761-1784.
  • Rajakaruna, S. J., Liu, W.-B., Ding, Y.-B., & Cao, G.-W. (2017). Strategy and technology to prevent hospital-acquired infections: Lessons from SARS, Ebola, and MERS in Asia and West Africa. Military Medical Research, 4(1), 32.
  • Ramasamy, S., Liu, C., Tran, H., Gubala, A., Gauci, P., McAllister, J., & Vo, T. (2010). Principles of antidote pharmacology: an update on prophylaxis, post‐exposure treatment recommendations and research initiatives for biological agents. British journal of pharmacology, 161(4), 721- 748.
  • Rowland, C. E., Brown III, C. W., Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464-477.
  • Rudge, J. W., Hanvoravongchai, P., Krumkamp, R., Chavez, I., Adisasmito, W., Chau, P. N., . . . Stein, M. (2012). Health system resource gaps and associated mortality from pandemic influenza across six Asian territories. PLoS One, 7(2).
  • Saito, M., Uchida, N., Furutani, S., Murahashi, M., Espulgar, W., Nagatani, N., & Kondo, S. (2018). Field- deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsystems & Nanoengineering, 4(1), 1-11.
  • Saleem, K., Khursheed, Z., Hano, C., Anjum, I., & Anjum, S. (2019). Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials, 9(12), 1749.
  • Simpson, L. L. (2004). Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol., 44, 167-193.
  • Sugawara, T., Ohkusa, Y., Kawanohara, H., & Kamei, M. (2018). Prescription surveillance for early detection system of emerging and re-emerging infectious disease outbreaks. Bioscience trends, 12(5), 523-525.
  • Sydnes, L. K. (2013). Update the chemical weapons convention: bring biological threats into the treaty and make chemists more aware of the dark side of their research. Nature, 496(7443), 25-27.
  • Szinicz, L. (2005). History of chemical and biological warfare agents. Toxicology, 214(3), 167-181.
  • Tao, P., Mahalingam, M., Zhu, J., Moayeri, M., Sha, J., Lawrence, W. S., . . . Rao, V. B. (2018). A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. MBio, 9(5), e01926-01918.
  • Titus, E., Lemmer, G., Slagley, J., & Eninger, R. (2019). A review of CBRN topics related to military and civilian patient exposure and decontamination. American journal of disaster medicine, 14(2), 137-149.
  • Vijayan, V., Mohapatra, A., Uthaman, S., & Park, I.-K. (2019). Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics, 11(10), 534.
  • Wagner, C. S., & Alexander, J. (2013). Evaluating transformative research programmes: A case study of the NSF Small Grants for Exploratory Research programme. Research Evaluation, 22(3), 187-197.
  • Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown III, C. W., Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sensors, 3(10), 1894-2024.
  • Yeh, M.-K., Chen, J.-L., & Chiang, C.-H. (2002). Vibrio cholerae-loaded poly (DL lactide-co-glycolide) microparticles. Journal of microencapsulation, 19(2), 203-212.
  • Yue, H., & Ma, G. (2015). Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine, 33(44), 5927-5936.
  • Zhang, Y., Yuan, K., & Zhang, L. (2019). Micro/nanomachines: from functionalization to sensing and removal. Advanced Materials Technologies, 4(4), 1800636.
  • Zingaretti, C., De Francesco, R., & Abrignani, S. (2014). Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clinical Microbiology and Infection, 20, 103-109.

Cite this article

    APA : Afridi, M. K., Ali, R., & Jan, I. (2020). Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents. Global Strategic & Security Studies Review, V(III), 117-129. https://doi.org/10.31703/gsssr.2020(V-III).13
    CHICAGO : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. 2020. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V (III): 117-129 doi: 10.31703/gsssr.2020(V-III).13
    HARVARD : AFRIDI, M. K., ALI, R. & JAN, I. 2020. Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents. Global Strategic & Security Studies Review, V, 117-129.
    MHRA : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. 2020. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V: 117-129
    MLA : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review, V.III (2020): 117-129 Print.
    OXFORD : Afridi, Manzoor Khan, Ali, Rubina, and Jan, Inamullah (2020), "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents", Global Strategic & Security Studies Review, V (III), 117-129
    TURABIAN : Afridi, Manzoor Khan, Rubina Ali, and Inamullah Jan. "Impact of Social Sciences on Nanovaccines Awareness in attaining Sustainability against Biological Warfare Agents." Global Strategic & Security Studies Review V, no. III (2020): 117-129. https://doi.org/10.31703/gsssr.2020(V-III).13